Minimal degree sequence for 2-bridge knots

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uniqueness of bridge surfaces for 2-bridge knots

Any 2-bridge knot in S has a bridge sphere from which any other bridge surface can be obtained by stabilization, meridional stabilization, perturbation and proper isotopy.

متن کامل

On the lexicographic degree of two-bridge knots

We study the degree of polynomial representations of knots. We obtain the lexicographic degree for two-bridge torus knots and generalized twist knots. The proof uses the braid theoretical method developed by Orevkov to study real plane curves, combined with previous results from [KP10] and [BKP14]. We also give a sharp lower bound for the lexicographic degree of any knot, using real polynomial ...

متن کامل

The Kauffman Polynomials of 2-bridge Knots

The 2-bridge knots (or links) are a family of knots with bridge number 2. A 2bridge knot (link) has at most 2 components. Except for the knot 85, the first 25 knots in the Rolfsen Knot Table are 2-bridge knots. A 2-bridge knot is also called a rational knot because it can be obtained as the numerator or denominator closure of a rational tangle. The rich mathematical aspects of 2-bridge knots ca...

متن کامل

Minimal forbidden sets for degree sequence characterizations

Given a set F of graphs, a graph G is F-free if G does not contain any member of F as an induced subgraph. Barrus, Kumbhat, and Hartke [4] called F a degree-sequence-forcing (DSF) set if, for each graph G in the class C of F-free graphs, every realization of the degree sequence of G is also in C. A DSF set is minimal if no proper subset is also DSF. In this paper, we present new properties of m...

متن کامل

A Sequence of Degree One Vassiliev Invariants for Virtual Knots

For ordinary knots in 3-space, there are no degree one Vassiliev invariants. For virtual knots, however, the space of degree one Vassiliev invariants is infinite dimensional. We introduce a sequence of three degree one Vassiliev invariants of virtual knots of increasing strength. We demonstrate that the strongest invariant is a universal Vassiliev invariant of degree one for virtual knots in th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Fundamenta Mathematicae

سال: 2006

ISSN: 0016-2736,1730-6329

DOI: 10.4064/fm190-0-7